Tag Archives: cnc gear hobbing

China Hot selling Mlt-Yk3120 Direct Drive Six-Axis CNC Gear Hobbing Machine PRO Max Dia. 200mm Max Precision 7 (GB/T10095-2008) drive shaft shop

Product Description

High Speed and High Precision Mlt-Yk3120 Direct Drive Six-Axis CNC Gear Hobbing Machine PRO 

 

The same quality, lowest price; same price, best quality.

Description   Parameter
Processing Capacity

 

Control the number of axes Axis 6
Gear Type Cylindrical spur gear, helical gear, worm gear, sprocket, drum teeth, taper teeth
And other tooth parts
Machining Accuracy Mass production grade 7 (GB/T10095-2008)
Workpiece Workpiece

 

Max machined diameter 200mm
Min machining Module The 0.5 mm
Max machining Module 4mm
Max machining Length 250mm
 Cut teeth Number 4 or higher
Cutter
 Tool
Maximum hob speed 2000 r/min
Maximum length of hob 120mm (27,32 tool bar can hold 150mm length hob)
Maximum outside diameter of hob 100mm
Dia of changeable center axis which assemble hobbing cutter 22,27,32
Tool Position Accuracy ≤5um
Hob Shifting Travel 150mm
Hob shifting Auto
Shaft Hob Head Swing Angle Plus or minus 45 °
Turntable Z-Slide Travel 300mm
Turntable Dia 250mm
Turntable Max. RPM 200RPM
Machine Power
 Power
Main Motor Power Main motor power 18kw
Total machine Power Total Power 35kw
Size & Weight Total Floor Space (L*W*H) 2400 * 2000 * 2600
Machine Weight Machine weight 6000Kg

Processing Object:

Cylindrical spur gear, helical gear, worm gear, sprocket, drum teeth, taper teeth
And other tooth parts

Technical description

 

MLT-YK3120 CNC high speed gear hobbing machine is an excellent domestic vertical gear hobbing machine. Carefully developed by MLT and with fully independent core technology.
Remark: Picture shown as 4 axis machine

MLT-YK3120 high speed six-axis CNC hobbing machine is our company carefully developed and has completely independent core technology of excellent domestic CNC direct drive hobbing machine, the machine integrates the advantages of modern CNC automatic CNC technology, the use of direct drive B C axis, with high speed, high precision and high torque and excellent dynamic response performance, Compared with other equipment of the same type, it has the characteristics of high machining precision, high processing efficiency and good accuracy retention. Can be processed straight teeth, bevel teeth, small taper, drum and other gears, can easily achieve 45° tooth shape processing. Can be processed spline, less teeth gear and other special gear. With 2 precision rolling tool setting device. Supports dry cutting.

 

 

Service item:

1. Machine warranty period: 12 months once the customer receives machine, after 12 months, we may answer the customer’s question on line or by e-mail within 24 hours

2. CZPT will prepare 1 more set of quick-wear components with the machine for the customer

3. CZPT will not provide or change any part or component for free if the customer damages them abnormally, customer needs to purchase them separately

4. CZPT will afford the customer’s technician local transportation, accommodation and catering cost when the customer’s technician comes to CZPT factory to have a train or inspects the machine before the machine delivery and the customer will afford their technician travelling cost

5. In the warranty period, if the customer requests CZPT engineer to support in foreign country, CZPT will supports to check equipment and train the customer technician for free but the customer needs to afford Mltor’s engineer travelling expenses, local transportation and accommodation and catering cost

After-sales Service: 12 Month
Warranty: 12 Month
Application: Gear
Process Usage: Gear Hobbing
Movement Method: Linear Control
Control Method: Open-Loop Control
Samples:
US$ 49.99/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

splineshaft

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the two types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from two separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is one method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is one method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to one another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, two precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These three factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Hot selling Mlt-Yk3120 Direct Drive Six-Axis CNC Gear Hobbing Machine PRO Max Dia. 200mm Max Precision 7 (GB/T10095-2008)   drive shaft shop	China Hot selling Mlt-Yk3120 Direct Drive Six-Axis CNC Gear Hobbing Machine PRO Max Dia. 200mm Max Precision 7 (GB/T10095-2008)   drive shaft shop
editor by CX 2023-11-21

China Best Sales Efficient High Speed High Precision CNC Gear Hobbing Machine Max Dia 280mm Workpiece, 1-3 Module Range front drive shaft

Product Description

YK3128 Direct drive high speed CNC gear hobbing machine Max Dia 280mm workpiece, 1~3 module range

 

The same quality, lowest price; same price, best quality.

Description   Parameter
Processing Capacity Axis   4/5
Gear Type ,Straight teeth, helical teeth, worm gear, spline and other tooth parts
Accuracy 7~8(GB/T10095-2008)
Workpiece Max. Dia 280mm
Min. Module 1mm
Max. Module 3mm
Max. Length 200mm
Tool Max. Rotating speed 1500 r/min
Max. Tool Length 80mm
Max. Hob Dia 120mm
Dia of changeable center axis which assemble hobbing cutter φ22,φ27
Tool Position Accuracy ≤5um
Y Hob Shifting Travel 100mm
Hob shifting Manual/Auto
Shaft Hob Head Swing Angle ±45°
Turntable Z  Z-Slide Travel 210mm
Turntable Dia 200mm
Turntable Max. RPM 200RPM
Power Main Motor Power 17kw
Total Power 30kw
Size & Weight (L*W*H) Floor Space 4000*2800*2900
Machine Weight 5100kg

 

Processing Object:

spur gear, helical gear , worm gear and spline

Technical description

 

MLT-YK3128 CNC high speed gear hobbing machine is an excellent domestic vertical gear hobbing machine. Carefully developed by MLT and with fully independent core technology.
Remark: Picture shown as 4 axis machine

The machine tool is equipped with MLT gear hobbing special control system, the original core gear processing algorithm software (non-secondary development macro program calculation). The technical advantages is multi-axis NC servo drive, which B,C axis adopts high precision and large torque servo direct drive motor (DD servo motor). With high speed, high precision and high torque, MLT-YK3128 has excellent dynamic response performance. Equipped with workpiece hydraulic clamping cylinder, tail seat hydraulic lifting function, compared with other similar equipment, MLT-YK3128 has the characteristics of high machining accuracy, high machining efficiency and good accuracy retention.

This machine tool is a 4-axis / 5-axis CNC high-speed gear hobbing machine working according to the expansion method, with 3 CNC linear axes: radial feed axis (X-axis); Axial feed axis (Z axis); Tangential movement axis (Y axis, 4 axis /5 axis is available). Two CNC rotation axes; Table rotation shaft (C-axis); Hob spindle rotation shaft (B axis);

 

Service item:

1. Machine warranty period: 12 months once the customer receives machine, after 12 months, we may answer the customer’s question on line or by e-mail within 24 hours

2. CZPT will prepare 1 more set of quick-wear components with the machine for the customer

3. CZPT will not provide or change any part or component for free if the customer damages them abnormally, customer needs to purchase them separately

4. CZPT will afford the customer’s technician local transportation, accommodation and catering cost when the customer’s technician comes to CZPT factory to have a train or inspects the machine before the machine delivery and the customer will afford their technician travelling cost

5. In the warranty period, if the customer requests CZPT engineer to support in foreign country, CZPT will supports to check equipment and train the customer technician for free but the customer needs to afford Mltor’s engineer travelling expenses, local transportation and accommodation and catering cost

After-sales Service: 12 Month
Warranty: 12 Month
Application: Gear
Process Usage: Gear Hobbing
Movement Method: Linear Control
Control Method: Open-Loop Control
Samples:
US$ 49.99/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

splineshaft

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least four inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following three factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the two is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by two coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to one another.

China Best Sales Efficient High Speed High Precision CNC Gear Hobbing Machine Max Dia 280mm Workpiece, 1-3 Module Range   front drive shaft	 China Best Sales Efficient High Speed High Precision CNC Gear Hobbing Machine Max Dia 280mm Workpiece, 1-3 Module Range   front drive shaft
editor by CX 2023-11-15