China Good quality CNC Machining Stainless Steel/Steel Spline Shafts

Product Description

product description

Material   Stainless Steel, Brass, Aluminum, Steel, Carbon Steel, Copper & etc
Precision Processing  Drilling, Milling, CNC turning, Grinding, Wire cutting, EDM & etc
Dimension  As per customers’ request
Surface treatment Anodize; polishing; zinc/nickel/chrome/gold plating, sand blasting,   Phosphate coating & etc
Tolerance ±0.01mm ~± 0.05mm/can also be customized
Part Color  Silver, Red, Blue, Gold, Oliver, Black, White & etc
Quality control 100% inspection before shipment
Samples  Acceptable
Production output 100.000 pieces/ month
Productin range  from 1-2000mm with tolerance ±0.01mm                                     
Experience 7 years of professional  OEM service
Ability To develop hundreds of new parts annually.                               
 Packaging  carton box, wooden case/according to the clients
 delivery time 45 days regularly /Based on the quantity of order 
Shipping By sea, By air, By DHL,UPS ,TNT& etc.
 Term of Payment  T/T. L/C or Customer’s request

Product Image

Company Profile
1.  We are cnc machining/turning/Stamping/Casting supplier in HangZhou .

2.   We  provide goods  in  high quality and competitive price and professional service .

3.  “Excellence, Responsibility, Science”is the pursuit of our company. 

4.  Material:brass, stainless steel, aluminum, plastic ,etc.

                            HangZhou CHINAMFG Machinery Technology Co., Ltd

HangZhou CHINAMFG Machinery Technology Co., Ltd  is a subsidiary company of HangZhou Kehong Machinery Co.,Ltd.   We specialize in manufacturing: precision CNC machining parts, hardware components, standard and non- standard parts, general machinery and photovoltaic components ect. We provide the complete machining-service: turning, milling,drilling,grinding,boring, bending,stamping, welding,surface treatment, laser machining, wire EDM, and other CNC machining fabricating according to samples or drawings from customers.

We have the main equipments over 20 units: Vertical machining centers-6 sets, Horizontal machining center-1 set ,CNC lathes-4 sets, ,plain  milling machine ,engine Lathe, Surface grinder and others.our testing equipments: Switzerland electronic digital display measuring grohe, Rockwell apparatus ,micrometer,vernier caliper, etc.  

” Excellence, Responsibility, Science ” is the pursuit of our company. We have the united team with scientific technology and  responsible  attitude. It is the key base for making the excellent quality & service for you and achieving the win-win business. 

Equipment List
          equipment name processing range spindle taper number note
 Horizontal machining center 1100×750×650 ISO50 1 four-axis
 Vertical machining center 1300×650×920 ISO50 2 four-axis
 Vertical machining center 1100×600×750 ISO50 1 four-axis
 Vertical machining center 1070×560×750 ISO40 1 four-axis
 Vertical machining center 800×450×550 ISO40 2  
cnc lathe 6150 Ø500×850   3  
cnc lathe CJK 0571 Ø220×310   1  
engine 6150 Ø500×1500   2  
engine 6140 Ø400×100   2  
surface grinder 7130 1000×300   1  
vertical milling machine 700×320×450   2  
horizontal milling machine 600×320×450   1  
 Drilling machine with jointed arm Ø40×1100   1  
bench drill φ20   3  
tapper M16   1  
vernier caliper 0-1000mm   28  
depthometer 0-300mm   6  
tongue 0-500mm   3  
micrometer 0-255mm   25  
electronic digital display measuring grohe 400MM   1 Switzerland
Rockwell apparatus     1  

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Samples:
US$ 4.8/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

spline shaft

How do spline shafts handle variations in torque and rotational force?

Spline shafts are designed to handle variations in torque and rotational force in mechanical systems. Here’s a detailed explanation:

1. Interlocking Splines:

Spline shafts have a series of interlocking splines along their length. These splines engage with corresponding splines on the mating component, such as gears or couplings. The interlocking design ensures a secure and robust connection, capable of transmitting torque and rotational force.

2. Load Distribution:

When torque is applied to a spline shaft, the load is distributed across the entire engagement surface of the splines. This helps to minimize stress concentrations and prevents localized wear or failure. The load distribution capability of spline shafts allows them to handle variations in torque and rotational force effectively.

3. Material Selection:

Spline shafts are typically made from materials with high strength and durability, such as alloy steels. The material selection is crucial in handling variations in torque and rotational force. It ensures that the spline shaft can withstand the applied loads without deformation or failure.

4. Spline Profile:

The design of the spline profile also contributes to the handling of torque variations. The spline profile determines the contact area and the distribution of forces along the splines. By optimizing the spline profile, manufacturers can enhance the load-carrying capacity and improve the ability of the spline shaft to handle variations in torque.

5. Surface Finish and Lubrication:

Proper surface finish and lubrication play a crucial role in the performance of spline shafts. A smooth surface finish reduces friction and wear, while suitable lubrication minimizes heat generation and ensures smooth operation. These factors help in handling variations in torque and rotational force by reducing the impact of friction and wear on the spline engagement.

6. Design Considerations:

Engineers take several design considerations into account to ensure spline shafts can handle variations in torque and rotational force. These considerations include appropriate spline dimensions, tooth profile geometry, spline fit tolerance, and the selection of mating components. By carefully designing the spline shaft and its mating components, engineers can optimize the system’s performance and reliability.

7. Overload Protection:

In some applications, spline shafts may be equipped with overload protection mechanisms. These mechanisms, such as shear pins or torque limiters, are designed to disconnect the drive temporarily or slip when the torque exceeds a certain threshold. This protects the spline shaft and other components from damage due to excessive torque.

Overall, spline shafts handle variations in torque and rotational force through their interlocking splines, load distribution capability, appropriate material selection, optimized spline profiles, surface finish, lubrication, design considerations, and, in some cases, overload protection mechanisms. These features ensure efficient torque transmission and enable spline shafts to withstand the demands of various mechanical systems.

spline shaft

Can spline shafts be used in automotive applications, and if so, how?

Yes, spline shafts are extensively used in automotive applications due to their ability to transmit torque and provide reliable power transmission. Here’s how spline shafts are used in automotive applications:

Spline shafts play a crucial role in various automotive systems and components, including:

  • Drivetrain: Spline shafts are an integral part of the drivetrain system in vehicles. They transmit torque from the engine to the wheels, allowing the vehicle to move. Spline shafts are present in components such as the transmission, differential, and axle shafts. In manual transmissions, the spline shaft connects the transmission input shaft to the clutch disc, enabling power transfer from the engine. In automatic transmissions, spline shafts are used in the torque converter and the output shaft.
  • Steering System: Spline shafts are employed in the steering system to transmit torque from the steering wheel to the steering rack or gearbox. They provide a direct connection between the driver’s input and the movement of the wheels, allowing for steering control.
  • Power Take-Off (PTO) Systems: Some vehicles, particularly commercial trucks and agricultural machinery, utilize PTO systems. Spline shafts are used in PTOs to transfer power from the vehicle’s engine to auxiliary equipment, such as hydraulic pumps, generators, or agricultural implements.
  • Transfer Cases: In four-wheel-drive (4WD) or all-wheel-drive (AWD) vehicles, transfer cases are used to distribute power to the front and rear axles. Spline shafts are utilized in the transfer case to transfer torque between the transmission and the front and rear drive shafts.
  • Propeller Shafts: Spline shafts are present in propeller shafts, which transmit torque from the transmission or transfer case to the rear axle in rear-wheel-drive vehicles. They accommodate the relative movement between the transmission and the axle due to suspension travel.

In automotive applications, spline shafts are designed to withstand high torque loads, provide precise torque transmission, and accommodate misalignments and fluctuations in operating conditions. They are typically made from high-strength steel or alloy materials to ensure durability and resistance to wear. Proper lubrication is essential to minimize friction and ensure smooth operation.

The use of spline shafts in automotive applications allows for efficient power transmission, precise control, and reliable performance, contributing to the overall functionality and drivability of vehicles.

spline shaft

How does a spline shaft differ from other types of shafts?

A spline shaft differs from other types of shafts in several ways. Here’s a detailed explanation:

1. Spline Structure:

A spline shaft features a series of ridges or teeth (splines) that are machined onto its surface. These splines create a precise and controlled interface with mating components, allowing for torque transmission and relative movement. In contrast, other types of shafts, such as plain shafts or keyed shafts, do not have the splines and rely on different mechanisms for torque transmission.

2. Torque Transmission and Relative Movement:

Unlike plain shafts or keyed shafts, which transmit torque through a frictional or mechanical connection, spline shafts allow for both torque transmission and relative movement between the shaft and mating components. The splines on the shaft engage with corresponding splines on the mating component, creating an interlock that transfers rotational force while accommodating axial or radial displacement. This feature provides flexibility and is particularly useful in applications where misalignment or relative movement needs to be accommodated.

3. Load Distribution:

One of the advantages of spline shafts is their ability to distribute loads over a larger surface area. The multiple contact points created by the splines help distribute the applied load evenly along the shaft’s length. This load distribution minimizes stress concentrations and reduces the risk of premature wear or failure. In contrast, other types of shafts may rely on a single keyway or frictional contact, which can result in higher stress concentrations and limited load distribution.

4. Design Flexibility:

Spline shafts offer greater design flexibility compared to other types of shafts. The number, size, and shape of the splines can be customized to meet specific design requirements. This allows for optimization of torque transmission, load-bearing capacity, and relative movement characteristics based on the application’s needs. Other types of shafts may have more standardized designs and limited customization options.

5. Application Variability:

Spline shafts find widespread use in various industries and applications where torque transmission, relative movement, and load distribution are crucial. They are commonly employed in gearboxes, power transmission systems, steering mechanisms, and other rotational systems. Other types of shafts, such as plain shafts or keyed shafts, may be more suitable for applications that require simpler torque transmission without the need for relative movement.

6. Installation and Maintenance:

When compared to other types of shafts, spline shafts may require more precise machining and alignment during installation. The mating components must be accurately matched to ensure proper engagement and torque transfer. Additionally, spline shafts may require periodic inspection and maintenance to ensure the integrity of the splines and optimal performance.

In summary, spline shafts differ from other types of shafts due to their spline structure, ability to accommodate relative movement, load distribution capability, design flexibility, application variability, and specific installation and maintenance requirements. These characteristics make spline shafts well-suited for applications that demand precise torque transmission, flexibility, and load distribution.

China Good quality CNC Machining Stainless Steel/Steel Spline Shafts  China Good quality CNC Machining Stainless Steel/Steel Spline Shafts
editor by CX 2024-01-09